124 research outputs found

    Resonant control of cold-atom transport through two optical lattices with a constant relative speed

    Get PDF
    We show theoretically that the dynamics of cold atoms in the lowest energy band of a stationary optical lattice can be transformed and controlled by a second, weaker, periodic potential moving at a constant speed along the axis of the stationary lattice. The atom trajectories exhibit complex behavior, which depends sensitively on the amplitude and speed of the propagating lattice. When the speed and amplitude of the moving potential are low, the atoms are dragged through the static lattice and perform drifting orbits with frequencies an order of magnitude higher than that corresponding to the moving potential. Increasing either the speed or amplitude of the moving lattice induces Bloch-like oscillations within the energy band of the static lattice, which exhibit complex resonances at critical values of the system parameters. In some cases, a very small change in these parameters can reverse the atom's direction of motion. In order to understand these dynamics we present an analytical model, which describes the key features of the atom transport and also accurately predicts the positions of the resonant features in the atom's phase space. The abrupt controllable transitions between dynamical regimes, and the associated set of resonances, provide a mechanism for transporting atoms between precise locations in a lattice: as required for using cold atoms to simulate condensed matter or as a stepping stone to quantum information processing. The system also provides a direct quantum simulator of acoustic waves propagating through semiconductor nanostructures in sound analogs of the optical laser (SASER)

    Cluster and group synchronization in delay-coupled networks

    Full text link
    We investigate the stability of synchronized states in delay-coupled networks where synchronization takes place in groups of different local dynamics or in cluster states in networks with identical local dynamics. Using a master stability approach, we find that the master stability function shows a discrete rotational symmetry depending on the number of groups. The coupling matrices that permit solutions on group or cluster synchronization manifolds show a very similar symmetry in their eigenvalue spectrum, which helps to simplify the evaluation of the master stability function. Our theory allows for the characterization of stability of different patterns of synchronized dynamics in networks with multiple delay times, multiple coupling functions, but also with multiple kinds of local dynamics in the networks' nodes. We illustrate our results by calculating stability in the example of delay-coupled semiconductor lasers and in a model for neuronal spiking dynamics.Comment: 11 pages, 7 figure

    Nonlinear dynamics and band transport in a superlattice driven by a plane wave

    Get PDF
    A quantum particle transport induced in a spatially-periodic potential by a propagating plane wave has a number important implications in a range of topical physical systems. Examples include acoustically driven semiconductor superlattices and cold atoms in optical crystal. Here we apply kinetic description of the directed transport in a superlattice beyond standard linear approximation, and utilize exact path-integral solutions of the semiclassical transport equation. We show that the particle drift and average velocities have non-monotonic dependence on the wave amplitude with several prominent extrema. Such nontrivial kinetic behaviour is related to global bifurcations developing with an increase of the wave amplitude. They cause dramatic transformations of the system phase space and lead to changes of the transport regime. We describe different types of phase trajectories contributing to the directed transport and analyse their spectral content

    Delayed feedback as a means of control of noise-induced motion

    Get PDF
    Time--delayed feedback is exploited for controlling noise--induced motion in coherence resonance oscillators. Namely, under the proper choice of time delay, one can either increase or decrease the regularity of motion. It is shown that in an excitable system, delayed feedback can stabilize the frequency of oscillations against variation of noise strength. Also, for fixed noise intensity, the phenomenon of entrainment of the basic oscillation period by the delayed feedback occurs. This allows one to steer the timescales of noise-induced motion by changing the time delay.Comment: 4 pages, 4 figures. In the replacement file Fig. 2 and Fig. 4(b),(d) were amended. The reason is numerical error found, that affected the quantitative estimates of correlation time, but did not affect the main messag

    Towards the Heisenberg limit in microwave photon detection by a qubit array

    Full text link
    Using an analytically solvable model, we show that a qubit array-based detector allows to achieve the fundamental Heisenberg limit in detecting single photons. In case of superconducting qubits, this opens new opportunities for quantum sensing and communications in the important microwave range.Comment: 6 pages, 3 figure

    Controlling high-frequency collective electron dynamics via single-particle complexity

    Get PDF
    We demonstrate, through experiment and theory, enhanced high-frequency current oscillations due to magnetically-induced conduction resonances in superlattices. Strong increase in the ac power originates from complex single-electron dynamics, characterized by abrupt resonant transitions between unbound and localized trajectories, which trigger and shape propagating charge domains. Our data demonstrate that external fields can tune the collective behavior of quantum particles by imprinting configurable patterns in the single-particle classical phase space.Comment: 5 pages, 4 figure

    Synchronization of coupled neural oscillators with heterogeneous delays

    Full text link
    We investigate the effects of heterogeneous delays in the coupling of two excitable neural systems. Depending upon the coupling strengths and the time delays in the mutual and self-coupling, the compound system exhibits different types of synchronized oscillations of variable period. We analyze this synchronization based on the interplay of the different time delays and support the numerical results by analytical findings. In addition, we elaborate on bursting-like dynamics with two competing timescales on the basis of the autocorrelation function.Comment: 18 pages, 14 figure

    Phase relationships between two or more interacting processes from one-dimensional time series. I. Basic theory.

    Get PDF
    A general approach is developed for the detection of phase relationships between two or more different oscillatory processes interacting within a single system, using one-dimensional time series only. It is based on the introduction of angles and radii of return times maps, and on studying the dynamics of the angles. An explicit unique relationship is derived between angles and the conventional phase difference introduced earlier for bivariate data. It is valid under conditions of weak forcing. This correspondence is confirmed numerically for a nonstationary process in a forced Van der Pol system. A model describing the angles’ behavior for a dynamical system under weak quasiperiodic forcing with an arbitrary number of independent frequencies is derived

    The bifurcation phenomena in the resistive state of the narrow superconducting channels

    Full text link
    We have investigated the properties of the resistive state of the narrow superconducting channel of the length L/\xi=10.88 on the basis of the time-dependent Ginzburg-Landau model. We have demonstrated that the bifurcation points of the time-dependent Ginzburg-Landau equations cause a number of singularities of the current-voltage characteristic of the channel. We have analytically estimated the averaged voltage and the period of the oscillating solution for the relatively small currents. We have also found the range of currents where the system possesses the chaotic behavior
    • …
    corecore